Zinc (Zn) Removal from Textile Wastewater by Saw Dust Fixed Bed Column

Muhammad Haziq Aminuddin¹, Noor Syuhadah S.¹,*, Nurul Akmar Che Zaudin²

¹Faculty of Earth Science, Universiti Malaysia Kelantan, Kelantan, Malaysia
²Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Kelantan, Malaysia

Abstract

The textile industry has been recognized as one of the industries that produces high discharged rate of wastewater with high volume and composition of contaminants to the environment. Zinc (Zn) is one of the contaminant that commonly found in textile wastewater. An investigation on the capability of saw dust to remove Zn in the textile wastewater was done. The abundance of saw dust produced from the saw mill will bring adverse effects on the environment. In this study, an investigation of Zn removal was carried out by using saw dust fixed bed column. The effect of types of sawdust, adsorbent dosage and adsorbent particle size to the Zn removal was studied. The results showed that the carbonized sawdust with 15g of adsorbent dosage and 150μm of adsorbent particle size gives the highest percentage of Zn removal with lowest time taken. This study indicates that sawdust has the potential to be employed as an adsorbent for Zn removal in textile wastewater.

© 2017 UMK Publisher. All rights reserved.

1. Introduction

The textile industry is one of the industries that contribute to water quality problem. Many chemicals used in the textiles industry cause environmental and health problems (Khan & Malik, 2013). Zinc (Zn) is a lustrous bluish-white and reactive metal commonly found in the wastewater. Zn will combine with oxygen and other non-metals (Lemtech, 2008), producing another compound that could highly harm the environment. Disposal of textile wastewater that contains Zn to the environment without any prior treatment may deteriorate quality of water and is harmful to the aquatic ecosystem and its biodiversity. Therefore, it is crucial to have a proper textile wastewater treatment before being disposed to the environment.

Adsorption treatment using by-product as the raw materials to treat wastewater has been a popular choice because of its low cost and easy to get. The abundance of sawdust as a by-product can be used as an adsorbent agent to treat the textile wastewater. Sawdust refers to the tiny-sized and powdery wood waste produced by the sawing of wood with no profitable use and can cause serious environmental problems if disposed of inadequately (Couto et al., 2011). The contact with the sawdust can cause conjunctivitis, hay fever, asthma, coughing, hypersensitivity pneumonia and other respiratory diseases (McCann & Babin, 1995). Therefore, this study was aim to remove Zn contaminant in textile wastewater, which then could help reduce the abundance of saw dust that have bad effect to both human and environment.

2. Materials and Methods

2.1. Sample Collection

Textile wastewater was collected from textile workshop while saw dust was collected from wood workshop that located in Bachok, Kelantan. The textile wastewater was collected in polypropylene bottle that was rinsed with hydrochloric acid (HCl) to avoid contamination. The samples were then put in icebox and transfer to the laboratory for further analysis. Saw dust that was collected from the wood workshop was put in a zipper bag and then transferred to the laboratory for further process.

2.2. Sample Preparation

The collected sawdust was washed with distilled water and dried at 80°C for 24 hours before it was grinded and sieved into two different sizes (150 and 600μm) (Vinodhini & Das, 2010). Then, about 500 g of grinded saw dust was carbonized in a furnace at 500°C for 1 hour (Gecgel et al., 2013). The raw and carbonized sawdust were then stored in a separate tight lid container (Raffiea et al., 2012) for further process.

2.3. Fixed Bed Column Experiment

The fixed bed column experiment was made using a transparent polyethylene tube with 5cm diameter,
25cm long and 17.67cm² surface area which holds vertically by the retort stand. The bottom of the column was closed by nylon filter mesh (<150µm) in order to hold the sawdust in the column.

2.4. Textile Wastewater Treatment

The initial concentration of Zn in the textile wastewater was analyzed using Colorimeter DR900. Then, the fixed bed column experiments were conducted to remove the Zn in textile wastewater at room temperature (Evans, 2010). The experiment was conducted in two set. Raw saw dust was used in Set A and carbonized saw dust was used in Set B with different weight of absorbent and different size of adsorbent particle as shown in Table 1. 100mL of textile wastewater was passed through the column with flow rate of 37.5mL/min by using burette for both set of experiment.

The percentage of Zn removal was calculated as Equation 1 (Selvathan et al., 2015).

\[
\% \text{removal} = \left(\frac{C_0 - C_i}{C_0} \right) \times 100
\]

Where \(C_0 \) is the Zn value before the wastewater treated, while \(C_i \) is the Zn value after the wastewater treated.

3. Results and Discussion

The fixed-bed column experiment was done in two sets. Each set has four columns with different parameters as shown in Table 1. The height of the saw dust and time taken for 100mL of textile wastewater completely went through the adsorbent for each column were shown in Table 2.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Set A</th>
<th>Set B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of sawdust</td>
<td>Raw</td>
<td>Carbonized</td>
</tr>
<tr>
<td>Size particle (µm)</td>
<td>150 and 600</td>
<td>150 and 600</td>
</tr>
<tr>
<td>Adsorbent weight (g)</td>
<td>5 and 15</td>
<td>5 and 15</td>
</tr>
</tbody>
</table>

The percentage of Zn removal was calculated as Equation 1 (Selvathan et al., 2015).

\[
\% \text{removal} = \left(\frac{C_0 - C_i}{C_0} \right) \times 100
\]

Where \(C_0 \) is the Zn value before the wastewater treated, while \(C_i \) is the Zn value after the wastewater treated.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Set A</th>
<th>Set B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of sawdust</td>
<td>Raw</td>
<td>Carbonized</td>
</tr>
<tr>
<td>Size particle (µm)</td>
<td>150 and 600</td>
<td>150 and 600</td>
</tr>
<tr>
<td>Adsorbent weight (g)</td>
<td>5 and 15</td>
<td>5 and 15</td>
</tr>
</tbody>
</table>

The highest height of adsorbent is from carbonized sawdust with 15g of dosage and 150µm of the size particle. The fastest time taken for the textile wastewater to completely go through the adsorbent are from raw sawdust with the size of particle 150µm and 5g of dosage for about 7 minutes while the slowest to complete the experiment are from raw sawdust with 600µm and 15g with the time of 660 minutes.

After the fix-bed column experiment, the concentration of Zn in the textile wastewater was once again measured using DR900 Colorimeter in order to analyse the effect of the type of adsorbent, adsorbent dosage and adsorbent particle size in Zn removal. The Zn removal percentage of each set of fixed-bed column experiment was calculated and shown in Figure 1.

The results indicate that the type and particle size of the adsorbents did not give a big influence in Zn removal in the textile wastewater. This is because the difference of Zn removal percentage was only between 1 to 5%. However, the weight of the adsorbents did give a big influence in the Zn removal. This is because the difference of Zn removal percentage was between 40 to 50%. Meaning that the more adsorbent used, the more Zn will be removed from the textile wastewater.

Table 2: Height and time taken

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Set A</th>
<th>Set B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (µm)</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Dosage (g)</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>4.1</td>
<td>11.5</td>
</tr>
<tr>
<td>Time Taken (min)</td>
<td>7</td>
<td>14</td>
</tr>
</tbody>
</table>

The highest height of adsorbent is from carbonized sawdust with 15g of dosage and 150µm of the size particle. The fastest time taken for the textile wastewater to completely go through the adsorbent are from raw sawdust with the size of particle 150µm and 5g of dosage for about 7 minutes while the slowest to complete the experiment are from raw sawdust with 600µm and 15g with the time of 660 minutes.

4. Conclusion

Based on the results and discussion in this research, it shows that saw dust could be employed as a potential adsorbent for the Zn removal from the textile wastewater. The sawdust has successfully removed the Zn from textile effluents in this research with highest removal percentage of 90.74%.

Acknowledgement

A word of appreciation to the Faculty of Earth Science, University Malaysia Kelantan for providing all the equipment and laboratory devices to conduct the experiment. Cordial appreciation also goes to all staff from Environmental Lab.

References

Evans, T. M. (2010). Use Of Low-Cost Adsorbent To Treat Industrial Wastewater. (Master of Science in Engineering), University of the Witwatersrand, Johannesburg.

